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assumptionCheck Assumption Checking Function

Description

Checks some basic assumptions about the suitability of network analysis on your data

Usage

assumptionCheck(
data,
type = c("network", "impact"),
percent = 20,
split = c("median", "mean", "forceEqual", "cutEqual", "quartiles"),
plot = FALSE,
binary.data = FALSE,
na.rm = TRUE

)

Arguments

data dataframe or matrix of observational data (rows: observations, columns: nodes)

type which assumptions to check? "network" tests the suitability for network analysis
in general. "impact" tests the suitability for analyzing impact

percent percent difference from grand mean that is acceptable when comparing vari-
ances.

split if type="impact", specifies the type of split to utilize

plot logical. Should histograms each variable be plotted?

binary.data logical. Defaults to FALSE

na.rm logical. Should missing values be removed?
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Details

Network analysis rests on several assumptions. Among these: - Variance of each node is (roughly)
equal - Distributions are (roughly) normal

Comparing networks in impact rests on additional assumptions including: - Overall variances are
(roughly) equal in each half

This function checks these assumptions and notifies any violations. This function is not intended as
a substitute for careful data visualization and independent assumption checks.

See citations in the references section for further details.

References

Terluin, B., de Boer, M. R., & de Vet, H. C. W. (2016). Differences in Connection Strength between
Mental Symptoms Might Be Explained by Differences in Variance: Reanalysis of Network Data Did
Not Confirm Staging. PLOS ONE, 11(11), e0155205. Retrieved from https://doi.org/10.1371/journal.pone.0155205

bridge Bridge Centrality

Description

Calculates bridge centrality metrics (bridge strength, bridge betweenness, bridge closeness, and
bridge expected influence) given a network and a prespecified set of communities.

Usage

bridge(
network,
communities = NULL,
useCommunities = "all",
directed = NULL,
nodes = NULL,
normalize = FALSE

)

Arguments

network a network of class "igraph", "qgraph", or an adjacency matrix representing a
network

communities an object of class "communities" (igraph) OR a character vector of community
assignments for each node (e.g., c("Comm1", "Comm1", "Comm2", "Comm2)).
The ordering of this vector should correspond to the vector from argument
"nodes". Can also be in list format (e.g., list("Comm1"=c(1:10), "Comm2"=c(11:20)))

useCommunities character vector specifying which communities should be included. Default set
to "all"
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directed logical. Directedness is automatically detected if set to "NULL" (the default).
Symmetric adjacency matrices will be undirected, asymmetric matrices will be
directed

nodes a vector containing the names of the nodes. If set to "NULL", this vector will be
automatically detected in the order extracted

normalize logical. Bridge centralities are divided by their highest possible value (assuming
max edge strength=1) in order to normalize by different community sizes

Details

To plot the results, first save as an object, and then use plot() (see ?plot.bridge)

Centrality metrics (strength, betweenness, etc.) illuminate how nodes are interconnected among
the entire network. However, sometimes we are interested in the connectivity between specific
communities in a larger network. Nodes that are important in communication between communities
can be conceptualized as bridge nodes.

Bridge centrality statistics aim to identify bridge nodes. Bridge centralities can be calculated across
all communities, or between a specific subset of communities (as identified by the useCommunities
argument)

The bridge() function currently returns 5 centrality metrics: 1) bridge strength, 2) bridge between-
ness, 3) bridge closeness, 4) bridge expected influence (1-step), and 5) bridge expected influence
(2-step)

See ?plot.bridge for plotting details.

Bridge strength is defined as the sum of the absolute value of all edges that exist between a node A
and all nodes that are not in the same community as node A. In a directed network, bridge strength
can be separated into bridge in-degree and bridge out-degree.

Bridge betweenness is defined as the number of times a node B lies on the shortest path between
nodes A and C, where nodes A and C come from different communities.

Bridge closeness is defined as the inverse of the average length of the path from a node A to all
nodes that are not in the same community as node A.

Bridge expected influence (1-step) is defined as the sum of the value (+ or -) of all edges that exist
between a node A and all nodes that are not in the same community as node A. In a directed network,
expected influence only considers edges extending from the given node (e.g., out-degree)

Bridge expected influence (2-step) is similar to 1-step, but also considers the indirect effect that a
node A may have on other communities through other nodes (e.g, an indirect effect on node C as in
A -> B -> C). Indirect effects are weighted by the first edge weight (e.g., A -> B), and then added
to the 1-step expected influence. Indirect effects back on node A’s own community (A -> B -> A)
are not counted.

If negative edges exist, bridge expected influence should be used. Bridge closeness and bridge
betweenness are only defined for positive edge weights, thus negative edges, if present, are deleted
in the calculation of these metrics. Bridge strength uses the absolute value of edge weights.

Value

bridge returns a list of class bridge which contains:

$'Bridge Strength'
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$'Bridge Betweenness'

$'Bridge Closeness'

$'Bridge Expected Influence (1-step)'

$'Bridge Expected Influence (2-step)'

Each of these contains a vector of named centrality values

$'communities' is also returned, which returns the communities in vector format. If communities
were supplied as a list or igraph object, it is advised that one check the accuracy of this vector.

Examples

graph1 <- qgraph::qgraph(cor(depression))

b <- bridge(graph1, communities=c('1','1','2','2','2','2','1','2','1'))
b

coerce_to_adjacency Coerce to adjacency matrix

Description

Takes an object of type "qgraph", "igraph", or an adjacency matrix (or data.frame) and outputs an
adjacency matrix

Usage

coerce_to_adjacency(input, directed = NULL)

Arguments

input a network of class "igraph", "qgraph", or an adjacency matrix representing a
network

directed logical. is the network directed? If set to NULL, auto-detection is used
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depression Simulated Depression Profiles

Description

This simulated dataset contains severity ratings for 9 symptoms of major depressive disorder in
1000 individuals. Symptom ratings are assumed to be self-reported on a 100 point sliding scale.

Usage

depression

Format

a dataframe. Columns represent symptoms and rows represent individuals

Examples

head(depression)

EIGENnet EIGENnet

Description

Convenience function for converting a qgraph object to an eigenmodel layout

Usage

EIGENnet(
qgraph_net,
EIGENadj = NULL,
S = 1000,
burn = 200,
seed = 1,
repulse = F,
repulsion = 1,
eigenmodelArgs = list(),
...

)
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Arguments

qgraph_net an object of type qgraph

EIGENadj to use a base matrix for the eigenmodel other than the adjacency matrix stored
in qgraph_net, provide it in this argument

S number of samples from the Markov chain

burn number of initial scans of the Markov chain to be dropped

seed a random seed

repulse logical. Add a small repulsion force with wordcloud package to avoid node
overlap?

repulsion scalar for the repulsion force (if repulse=T). Larger values add more repulsion

eigenmodelArgs additional arguments in list format passed to eigenmodel::eigenmodel_mcmc

... additional arguments passed to qgraph

Details

An eigenmodel can be interpreted based on coordinate placement of each node. A node in the top
right corner scored high on both the first and second latent components

References

Jones, P. J., Mair, P., & McNally, R. J. (2018). Visualizing psychological networks: A tutorial in R.
Frontiers in Psychology, 9, 1742. https://doi.org/10.3389/fpsyg.2018.01742

expectedInf Expected Influence

Description

Calculates the one-step and two-step expected influence of each node.

Usage

expectedInf(network, step = c("both", 1, 2), directed = FALSE)

Arguments

network an object of type qgraph, igraph, or an adjacency matrix representing a net-
work. Adjacency matrices should be complete (e.g., not only upper or lower
half)

step compute 1-step expected influence, 2-step expected influence, or both

directed logical. Specifies if edges are directed, defaults to FALSE
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Details

When a network contains both positive and negative edges, traditional centrality measures such as
strength centrality may not accurately predict node influence on the network. Robinaugh, Millner,
& McNally (2016) showed that in these cases, expected influence is a more appropriate measure.

One-step expected influence is defined as the sum of all edges extending from a given node (where
the sign of each edge is maintained).

Two-step expected influence, as the name implies, measures connectivity up to two edges away from
the node. It is defined as the sum of the (weighted) expected influences of each node connected to
the initial node plus the one-step expected influence of the initial node. Weights are determined by
the edge strength between the initial node and each "second step" node.

See citations in the references section for further details.

References

Robinaugh, D. J., Millner, A. J., & McNally, R. J. (2016). Identifying highly influential nodes in
the complicated grief network. Journal of abnormal psychology, 125, 747.

Examples

out1 <- expectedInf(cor(depression[,1:5]))

out1$step1
out1$step2
plot(out1)
plot(out1, order="value", zscore=TRUE)

igraph_obj <- igraph::graph_from_adjacency_matrix(cor(depression))
out_igraph <- expectedInf(igraph_obj)

qgraph_obj <- qgraph::qgraph(cor(depression), DoNotPlot=TRUE)
out_qgraph <- expectedInf(qgraph_obj)

goldbricker Goldbricker - Identifying redundant nodes in networks using com-
pared correlations

Description

This function compares correlations in a psychometric network in order to identify nodes which
most likely measure the same underlying construct (i.e., are colinear)
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Usage

goldbricker(
data,
p = 0.05,
method = "hittner2003",
threshold = 0.25,
corMin = 0.5,
progressbar = TRUE

)

Arguments

data a data frame consisting of n rows (participants) and j columns (variables)

p a p-value threshold for determining if correlation pairs are "significantly differ-
ent"

method method for comparing correlations. See ?cocor.dep.groups.overlap for a full list

threshold variable pairs which have less than the threshold proportion of significantly dif-
ferent correlations will be considered "bad pairs"

corMin the minimum zero-order correlation between two items to be considered "bad
pairs". Items that are uncorrelated are unlikely to represent the same underlying
construct

progressbar logical. prints a progress bar in the console

Details

In a given psychometric network, two nodes may be redundantly measuring the same underlying
construct. If this is the case, the correlations between those two variables and all other variables
should be highly similar. That is, they should correlate to the same degree with other variables.

The cocor package uses a p-value threshold to determine whether a pair of correlations to a third
variable are significantly different from each other. Goldbricker wraps the cocor package to com-
pare every possible combination of correlations in a psychometric network. It calculates the pro-
portion of correlations which are significantly different for each different pair of nodes.

Using the threshold argument, one can set the proportion of correlations which is deemed "too low".
All pairs of nodes which fall below this threshold are returned as defined "bad pairs".

Pairs can then be combined using the net_reduce function

Note: to quickly change the threshold, one may simply enter an object of class "goldbricker" in the
data argument, and change the threshold. The p-value cannot be modified in the same fashion, as
re-computation is necessary.

Value

goldbricker returns a list of class goldbricker which contains:

$proportion_matrix - a j x j matrix of proportions. Each proportion signifies the amount of
significantly different correlations between the given node pair (j x j)

$suggested_reductions - a vector of "bad pairs" (names) and their proportions (values)



10 MDSnet

$p - p value from input

$threshold - threshold from input

Examples

gb_depression <- goldbricker(depression, threshold=0.5)

reduced_depression <- net_reduce(data=depression, badpairs=gb_depression)

## Set a new threshold quickly
gb_depression_60 <- goldbricker(data=gb_depression, threshold=0.6)

MDSnet MDSnet

Description

Convenience function for converting a qgraph object to a layout determined by multidimensional
scaling

Usage

MDSnet(
qgraph_net,
type = c("ordinal", "interval", "ratio", "mspline"),
MDSadj = NULL,
stressTxt = F,
repulse = F,
repulsion = 1,
mdsArgs = list(),
...

)

Arguments

qgraph_net an object of type qgraph

type transformation function for MDS, defaults to "ordinal"

MDSadj to use a proximities matrix other than the adjacency matrix stored in qgraph_net,
provide it in this argument

stressTxt logical. Print the stress value in the lower left corner of the plot?

repulse logical. Add a small repulsion force with wordcloud package to avoid node
overlap?

repulsion scalar for the repulsion force. Larger values add more repulsion

mdsArgs additional arguments in list format passed to smacof::mds

... additional arguments passed to qgraph
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Details

A network plotted with multidimensional scaling can be interpreted based on the distances between
nodes. Nodes close together represent closely associated nodes, whereas nodes that are far apart
represent unassociated or negatively associated nodes.

References

Jones, P. J., Mair, P., & McNally, R. J. (2018). Visualizing psychological networks: A tutorial in R.
Frontiers in Psychology, 9, 1742. https://doi.org/10.3389/fpsyg.2018.01742

net_reduce net_reduce

Description

This function takes predefined pairs of colinear variables in a dataset and a) combines them via
PCA or b) picks the "better" variable and eliminates the other variable

Usage

net_reduce(data, badpairs, method = c("PCA", "best_goldbricker"))

Arguments

data a data frame consisting of n rows (participants) and j columns (variables)

badpairs pairs of variables to be combined. Input may consist of: -an object of class
"goldbricker" (all bad pairs are combined) -a vector of item names, each con-
secutive pair will be considered a bad pair -a matrix with 2 columns where each
bad pair takes up 1 row

method method for combining variables. PCA takes the first principal component of the
two variables and defines it as a new variable. best_goldbricker requires that the
input of "badpairs" be an object of class "goldbricker" it selects the more unique
variable, and eliminates the other variable in the pair.

Details

In a given psychometric network, two nodes may be redundantly measuring the same underlying
construct. If this is the case, both variables should not appear in the same network, or network prop-
erties will be inaccurate. These variable pairs can be reduced by combining them, or by eliminating
one of them. net_reduce automates this process when given a list of "bad pairs"

If the same variable appears in multiple "bad pairs" (e.g., "x" and "y" is a bad pair, and so is "x"
and "z"), only the first of these pairs which appears in the badpairs argument will be reduced by the
function.
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Value

goldbricker returns a dataframe of n rows (participants) and j - x columns, where j is the number
of variables in the original dataframe, and x is the number of bad pairs to reduce.

Examples

gb_depression <- goldbricker(depression, threshold=0.5)

reduced_depression_PCA <- net_reduce(data=depression, badpairs=gb_depression)
reduced_depression_best <- net_reduce(data=depression,

badpairs=gb_depression, method="best_goldbricker")

PCAnet PCAnet

Description

Convenience function for converting a qgraph object to a layout determined by principal compo-
nents analysis

Usage

PCAnet(
qgraph_net,
cormat,
varTxt = F,
repulse = F,
repulsion = 1,
principalArgs = list(),
...

)

Arguments

qgraph_net an object of type qgraph

cormat the correlation matrix of the relevant data. If this argument is missing, the func-
tion will assume that the adjacency matrix from qgraph_net is a correlation
matrix

varTxt logical. Print the variance accounted for by the PCA in the lower left corner of
the plot

repulse logical. Add a small repulsion force with wordcloud package to avoid node
overlap?

repulsion scalar for the repulsion force (if repulse=T). Larger values add more repulsion
principalArgs additional arguments in list format passed to psych::principal

... additional arguments passed to qgraph
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Details

A network plotted with PCA can be interpreted based on coordinate placement of each node. A
node in the top right corner scored high on both the first and second principal components

References

Jones, P. J., Mair, P., & McNally, R. J. (2018). Visualizing psychological networks: A tutorial in R.
Frontiers in Psychology, 9, 1742. https://doi.org/10.3389/fpsyg.2018.01742

plot.bridge Plot "bridge" objects

Description

Convenience function for plotting bridge centrality

Usage

## S3 method for class 'bridge'
plot(
x,
order = c("given", "alphabetical", "value"),
zscore = FALSE,
include,
color = FALSE,
colpalette = "Dark2",
plotNA = FALSE,
...

)

Arguments

x an output object from bridge (class bridge)

order "alphabetical" orders nodes alphabetically, "value" orders nodes from highest to
lowest centrality values

zscore logical. Converts raw impact statistics to z-scores for plotting

include a vector of centrality measures to include ("Bridge Strength", "Bridge Between-
ness", "Bridge Closeness", "Bridge Expected Influence (1-step)", "Bridge Ex-
pected Influence (2-step)"), if missing all available measures will be plotted

color logical. Color each community separately in the plot?

colpalette A palette name from RColorBrewer, for coloring of axis labels

plotNA should nodes with NA values be included on the y axis?

... other plotting specifications in ggplot2 (aes)
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Details

Inputting an object of class bridge will return a line plot that shows the bridge centrality values of
each node

Examples

b <- bridge(cor(depression))
plot(b)
plot(b, order="value", zscore=TRUE,include=c("Bridge Strength", "Bridge Betweenness"))

plot.expectedInf Plot "expectedInf" objects

Description

Convenience function for plotting expected influence

Usage

## S3 method for class 'expectedInf'
plot(x, order = c("given", "alphabetical", "value"), zscore = TRUE, ...)

Arguments

x an output object from an expectedInf (class expectedInf)

order "alphabetical" orders nodes alphabetically, "value" orders nodes from highest to
lowest impact value

zscore logical. Converts raw impact statistics to z-scores for plotting

... other plotting specifications (ggplot2)

Details

Inputting an object of class expectedInf will return a line plot that shows the relative one-step
and/or two-step expected influence of each node.

Examples

myNetwork <- cor(depression[,1:5])
out1 <- expectedInf(myNetwork)
plot(out1$step1)

plot(out1, order="value", zscore=TRUE)
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PROCRUSTESnet PROCRUSTESnet

Description

Convenience function for simultaneously plotting two networks containing the same nodes.

Usage

PROCRUSTESnet(
qgraph_net1,
qgraph_net2,
type1 = c("ordinal", "interval", "ratio", "mspline"),
type2 = type1,
MDSadj1 = NULL,
MDSadj2 = NULL,
stressTxt = F,
congCoef = F,
repulse = F,
repulsion = 1,
mdsArgs = list(),
...

)

Arguments

qgraph_net1 an object of type qgraph

qgraph_net2 an object of type qgraph. Contains the same nodes as qgraph_net2

type1 transformation function for first MDS, defaults to "ordinal"

type2 transformation function for second MDS, defaults to the same as type1

MDSadj1 to use a proximities matrix other than the adjacency matrix stored in qgraph_net1,
provide it in this argument

MDSadj2 to use a proximities matrix other than the adjacency matrix stored in qgraph_net2,
provide it in this argument

stressTxt logical. Print the stress value in the lower left corner of the plots?

congCoef logical. Print the congruence coefficient for the two layouts?

repulse logical. Add a small repulsion force with wordcloud package to avoid node
overlap?

repulsion scalar for the repulsion force. Larger values add more repulsion

mdsArgs additional arguments in list format passed to smacof::mds

... additional arguments passed to qgraph
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Details

Each network’s layout is determined by multidimensional scaling, and then the layouts are brought
into a similar space by using the Procrustes algorithm.

A network plotted with multidimensional scaling can be interpreted based on the distances between
nodes. Nodes close together represent closely associated nodes, whereas nodes that are far apart
represent unassociated or negatively associated nodes.

The Procrustes algorithm brings the two layouts into a similar space through rotations and dilations
that do not impact the fit of the MDS solutions. In this implementation, the second network is
rotated and dilated to fit the first.

References

Jones, P. J., Mair, P., & McNally, R. J. (2018). Visualizing psychological networks: A tutorial in R.
Frontiers in Psychology, 9, 1742. https://doi.org/10.3389/fpsyg.2018.01742

social Simulated Social Engagement Data

Description

This simulated dataset contains binary social engagement scores for 16 individuals. For 400 so-
cial media posts on a group forum, individuals were given a score of 1 if they engaged in group
conversation regarding the post, and a score of 0 if they did not engage with the post.

Usage

social

Format

a dataframe. Columns represent individuals (nodes) and rows represent engagement in social media
group conversations

Examples

head(social)
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